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Abstract—We consider the problem of timely exchange of
updates between a central station and a set of ground terminals
V , via a mobile agent that traverses across the ground terminals
along a mobility graph G = (V,E). We design the trajectory
of the mobile agent to minimize peak and average age of
information (AoI), two newly proposed metrics for measuring
timeliness of information. We consider randomized trajectories,
in which the mobile agent travels from terminal i to terminal
j with probability Pi,j . For the information gathering problem,
we show that a randomized trajectory is peak age optimal and
factor-8H average age optimal, where H is the mixing time of
the randomized trajectory on the mobility graph G. We also
show that the average age minimization problem is NP-hard.
For the information dissemination problem, we prove that the
same randomized trajectory is factor-O(H) peak and average age
optimal. Moreover, we propose an age-based trajectory, which
utilizes information about current age at terminals, and show
that it is factor-2 average age optimal in a symmetric setting.

I. INTRODUCTION

Many emerging applications depend on the collection and
delivery of status updates between a set of ground terminals
and a central terminal using mobile agents. Examples include:
measuring traffic at road intersections [1], temperature, and
pollution in cities [2], ocean monitoring using underwater
autonomous vehicles [3], and surveillance using UAVs [4].
All of these applications depend upon regular status updates,
to be communicated in a timely manner, so as to keep the
central terminal and the ground terminals updated with fresh
information.

Age of Information (AoI) is a newly proposed metric that
captures timeliness of the received information [5]–[7]. Unlike
packet delay, AoI measures the lag in obtaining information
at the destination node, and is therefore suited for applications
involving gathering or dissemination of time sensitive updates.
Age of information, at a destination, is defined as the time
that elapsed since the last received information update was
generated at the source. AoI, upon reception of a new update
packet, drops to the time elapsed since generation of the
packet, and grows linearly otherwise.

We consider the problem of AoI minimization in gathering
and dissemination of information updates, between a set of
ground terminals and a central terminal. The information up-
dates can be as small as a single packet containing temperature
information or a high fidelity image or a video file. The ground
terminals are equipped with low power transmitters, and a
mobile agent is used to gather and disseminate information.
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The age or freshness of information gathered and dissem-
inated depends on the trajectory of the mobile agent, whose
mobility is constrained to a mobility graph G = (V,E). The
mobile agent can move from ground terminal i to ground
terminal j only if (i, j) ∈ E. This model can be used to capture
the fact that the agent may not be able to move between any
arbitrary locations due to topological limitations.

The problem of persistent monitoring in dynamic environ-
ments has been considered in [8] and [9] using tools from
optimal control. These works focus on minimizing uncertainty
when source locations are time varying, rather than timely
monitoring over a fixed set of locations. Minimizing delay in
a similar setting with packets arriving randomly in space and
time has been considered in [10].

Closer to our work is [11] in which some approximation
trajectories to minimize maximum latency on metric graphs
were proposed. In [12], the authors consider trajectory plan-
ning for a mobile agent to minimize AoI. They obtain the
best permutation of nodes for the mobile agent to visit in
sequence, given Euclidian distances between the nodes. In our
work, mobility is constrained by a general graph G, and we
seek the optimal trajectory over the space of all trajectories
allowed on this graph G, not just permutations of nodes. To
the best our knowledge, this is the first work to consider the
AoI minimization on general mobility graphs G, and provide
polynomial time approximation algorithms.

In the information gathering problem, we consider the
design of trajectories for the mobile agent to minimizes peak
and average age, two popular metrics of AoI. We first consider
the space of randomized trajectories, in which the mobile agent
traverses edges according to a random walk on the mobility
graph G. We show that a randomized trajectory is in fact
peak age optimal, and that it can be obtained in polynomial
time using the Metropolis-Hastings algorithm. We then prove
that solving for the average age optimal trajectory is NP-hard,
in a symmetric setting, and propose a heuristic randomized
trajectory that is simultaneously peak age optimal and factor-
8H average age optimal, where H is the mixing time of the
randomized trajectory on G. The factor H can scale with the
graph size, especially if the graph is not well connected. Thus,
we propose an age-based trajectory, in which the mobile agent
uses the current AoI to determine its motion, and show that it
is factor-2 optimal in a symmetric setting.

In the information dissemination problem, the central ter-
minal sends updates for each ground terminal via the mobile
agent. The mobile agent queues these update packets in a



first-come-first-serve (FCFS) queue, and delivers them to the
respective ground terminal when the mobile agent reaches it.
The FCFS queue assumption is motivated by uncontrollable
MAC layer queues, where the generated updates get queued
for transmission [7], [13]. We, now, not only have to design
the trajectory of the mobile agent, but also determine update
generation rate for each ground terminal. We show that the
peak age optimal randomized trajectory of the information
gathering problem, along with a simple update generation rate,
is at most a factor-O(H) optimal, in both peak and average
age. Also derived is an explicit formula for peak age of the
discrete time Ber/G/1 queue with vacations.

We describe the system model in Section II. The infor-
mation gathering and dissemination problems are studied in
Section III and Section IV, respectively. We present simulation
results in Section V, and conclude in Section VI. We have
omitted some of the proofs due to space constraints. See the
technical report for details [14].

II. SYSTEM MODEL

We consider a central terminal that needs to communicate
with a set of ground terminals V . The ground terminals are
equipped with low power, low range radio communication
devices, and cannot directly communicate with the central
terminal, or with each other. An autonomous mobile agent m,
is used as a relay between the central terminal and the ground
terminals, while moving across the geographical region where
the ground terminals are spread.

The mobility of the agent is constrained by a mobility graph
G = (V,E), where m can travel from ground terminal i to
ground terminal j only if (i, j) ∈ E. The graph G, thus,
constraints the set of allowable moves. We consider a time-
slotted system, with slot duration normalized to unity. In the
duration of a time-slot, the mobile agent stays at a ground
terminal to gather or disseminate information, and moves
to any of its neighbours in G for the next time-slot. The
mobility graph can be constructed from the limitations of a
slot duration, distances between ground terminals, and speed
of the mobile agent.

We consider two problems: information gathering and infor-
mation dissemination. In the information gathering problem,
every time the mobile agent reaches a ground terminal i ∈ V ,
the ground terminal sends a fresh update to the mobile agent,
which is immediately relayed to the central terminal. The age
Ai(t), at the central terminal, for the ground terminal i drops
to 1. When the mobile agent is not at the ground terminal i,
the age Ai(t) increases linearly; see Figure 1. The evolution
of Ai(t) in the information gathering problem is given by:

Ai(t+ 1) =

{
Ai(t) + 1, if m(t) 6= i

1, if m(t) = i
(1)

where m(t) denotes the location of the mobile agent at time
t. Note that the age evolution depends on the trajectory that
the mobile agent follows on the mobility graph G.

In the information dissemination problem, the central termi-
nal generates updates for each ground terminal. The generated
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Fig. 1: Information gathering problem: time evolution of age
Ai(t); Hk,i is the kth return time to terminal i.
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Fig. 2: Information dissemination problem: time evolution of
age Ai(t); tk, t′k are the generation and reception times of the
kth status update for terminal i.
updates are then transmitted to the mobile agent. The mobile
agent queues updates received from the central terminal in a
set of V FCFS queues, one for each ground terminal. The
mobile agent delivers the head-of-line update in queue i, to
ground terminal i, when it reaches i. The central terminal
has no control over the FCFS queues on the mobile agent,
however, can control the update generation rate λi, for each
ground terminal i.

The age Ai(t), at the ground terminal i, increases by 1 every
time the mobile agent is not at i, or when it is at i but has
no updates to deliver. Otherwise, a successful delivery of the
head-of-line update occurs in time slot t, and the age Ai(t)
drops to the age of the head-of-line update in queue i. See
Figure 2. This evolution of age Ai(t) can be written as:

Ai(t+1)=


Ai(t) + 1, if m(t) 6= i

Ai(t) + 1, if m(t) = i and Qi(t) = ∅
t−Gi(t) + 1, if m(t) = i and Qi(t) 6= ∅

, (2)

where Gi(t) is the time of generation of the head of line packet
in queue i, at time t, and Qi(t) denotes the set of packets in
the mobile agent’s queue i at time t.

A. Age Metrics

AoI is an evolving function of time. We consider two time
average metrics of AoI. Average age, for ground terminal i,



is defined as the time averaged area under the age curve:

Aave
i , lim sup

T→∞

1

T

T∑
t=1

Ai(t). (3)

In Figures 1 and 2, we see that the age Ai(t) peaks before a
fresh update is delivered. In the information gathering case, a
fresh update is delivered every time the mobile agent visits i,
i.e. m(t) = i. Whereas, in the information dissemination case,
a fresh update is delivered whenever m(t) = i and the queue
Qi(t) 6= ∅. The peak age Ap

i , for ground terminal i, defined as
an average of all the peaks in the age evolution curve Ai(t),
can be written as

Ap
i , lim sup

T→∞

t=T∑
t=1

Ai(t)1{m(t)=i}

t=T∑
t=1

1{m(t)=i}

, (4)

in the information gathering case and

Ap
i , lim sup

T→∞

t=T∑
t=1

Ai(t)1{m(t)=i,Qi(t)6=∅}

t=T∑
t=1

1{m(t)=i,Qi(t) 6=∅}

, (5)

in the information dissemination case.
We define the network peak and average age to be

Ap =
∑
i∈V

wiA
p
i and Aave =

∑
i∈V

wiA
ave
i , (6)

where wi > 0 are weights representing the relative importance
of a ground terminal i. Our goal is to minimize network peak
and average age.

B. Trajectory Space
We use T to denote a reasonably large space of trajectories:

T = { Trajectory T | fi(T ) exists and is positive ∀ i ∈ V } ,

where fi(T ) denotes the fraction of time-slots, the trajectory
T , is at ground terminal i:

fi(T ) = lim
T→∞

1

T

T∑
t=1

1{m(t)=i}. (7)

For a trajectory T ∈ T, the limit (7) exists and is positive
for all i ∈ V . This requirement is to ensure that the peak and
average age are both finite and well defined.

Peak and average age depend on the trajectory T ∈ T. We
use Ap(T ) and Aave(T ) to denote network peak and average
age, respectively, for T ∈ T.

III. INFORMATION GATHERING

In this section, we consider the problem of information
gathering. We define optimal peak and average age to be

Ap∗
G = min

T ∈T
Ap(T ), and Aave∗

G = min
T ∈T

Aave(T ), (8)

where T denotes the space of all trajectories for the mobile
agent.

We first consider randomized trajectories, where the mobile
agent moves according to a random walk on the mobility
graph. We shall show that for peak age optimality, such
randomized trajectories suffices. We then show that the av-
erage age optimization is NP-hard, and propose a heuristic
randomized trajectory. In Section III-D, we propose an age-
based trajectory for better average age performance.

A. Randomized Trajectories

We start by defining the class of randomized trajectories:

Definition A trajectory m(t), on mobility graph G, is
said to be a randomized trajectory if m(t) is an irreducible
Markov chain defined by a transition probability matrix
P:

P [m(t+ 1) = j|m(t) = i] = Pi,j , (9)

for all t and i, j ∈ V , where Pi,j = 0 for (i, j) /∈ E.

For convenience, we shall refer to m(t), defined above, as
the randomized trajectory P, where P to denote the matrix
with entries Pi,j . Note that Pi,j is the probability that the
mobile agent, when at ground terminal i, moves to ground
terminal j for the next time slot. The constraint: Pi,j = 0 for
(i, j) /∈ E, ensures that the randomized trajectory adheres to
the mobility constraints defined by G.

We assume in the definition of a randomized trajectory P,
that m(t) is an irreducible Markov chain over the state space
V . This is desired, since the mobile agent has to visit each
ground terminal for a positive fraction of time, or otherwise
the resulting peak and average age would be unbounded.

For any randomized trajectory P, we obtain explicit expres-
sions for network peak and average age. We use the notation
Ap(P) and Aave(P) to show explicit dependence of peak and
average age on the randomized trajectory P.

Theorem 1: The network peak and average age for a
randomized trajectory P is given by

Ap(P) =
∑
i∈V

wi
πi
, and Aave(P) =

∑
i∈V

wizii
πi

, (10)

where π is the unique stationary distribution obtained by
solving πP = π and zii are diagonal elements of the
matrix Z , (I −P + Π)−1, where Π is an n× n matrix
with entries Πi,j , πj , ∀i, j ∈ V .

Proof: From Figure 1, observe that the lth peak for Ai(t)
equals the lth return times Hl,i, and therefore, the peak age
Ap
i = E[H1,i]. Since the age curve Ai(t) increases in steps

from 1 to Hl,i, for every lth return time, the average age Aave
i

can be computed to be (E[H2
1,i] + E[H1,i])/(2E[H1,i]).

For a randomized trajectory P, the first and second moment
of return times are given by E[H1,i] = 1

πi
and E[H2

1,i] = −1
πi

+
2zii
π2
i

, respectively; see [15]. Substituting this we can obtain the



explicit expressions for peak and average age. A detailed proof
is in our technical report [14].

B. Peak Age Minimization

We first formulate the peak age minimization problem over
the space of randomized trajectories. We shall see that a peak
age optimal randomized trajectory suffices for optimality over
the space of all trajectories.

Using Theorem 1, we can write the peak age minimization
problem over the space of randomized trajectories as:

Minimize
P,π

∑
i∈V

wi
πi
,

subject to Pi,j ≥ 0, ∀(i, j), and P1 = 1,

πP = π, 1Tπ = 1, and πi ≥ 0 ∀i
Pi,j = 0, ∀(i, j) /∈ E,
P is irreducible.

(11)

Here, P is a randomized trajectory, while π is the unique
stationary distribution associated with it. This problem is
difficult to solve because the irreducibility constraint cannot be
expressed in a simple, solvable manner. Further, relaxing the
irreducibility constraint can yield a trivial solution like P = I ,
which are neither irreducible nor close to optimal.

However, the problem (11) can be transformed to finding
an irreducible P, with a given stationary distribution. This is
a simpler problem and can be solved using the Metropolis-
Hastings algorithm.

Lemma 1: Let π∗i ,
√
wi∑

j∈V

√
wj

, for all i ∈ V , to be a

distribution on V , and a randomized trajectory P satisfy
π∗P = π∗. Then, (π∗,P) solves (11).

Proof: If we were to minimize the objective in (11)
over the space of all distribution π on V , then the optimal
distribution would be π∗i =

√
wi/

∑
j∈V

√
wj , for all i ∈ V .

Thus, if a randomized trajectory P exists which induces this
distribution on V , then clearly (π∗,P) would solve (11).

Lemma 1 implies that a randomized trajectory P, that
satisfies π∗P = π∗, is a peak age optimal, over the space
of all randomized trajectories. We now construct one such
randomized trajectory: for π∗ given in Lemma 1, define a
Metropolis-Hastings randomized trajectory Pmh:

Pmh
i,j =


1
di

min(1,
π∗j di
π∗i dj

), if i 6= j and (i, j) ∈ E
1−

∑
j:j 6=i

Pmh
i,j , if i = j

0, otherwise

, (12)

where di equals the out degree of terminal i in the mobility
graph G. It is known that such a randomized trajectory Pmh

satisfies π∗P = π∗ [15]. This gives the following result.

Theorem 2: The Metropolis-Hastings randomized tra-
jectory Pmh solves (11), i.e. it is peak age optimal over
the space of all randomized trajectories.

Thus far, we considered randomized trajectories. We now
show that, for peak age optimality, this randomization suffices.

Theorem 3: The Metropolis-Hastings randomized tra-
jectory Pmh is peak age optimal over the space of all
trajectories T, namely Ap∗(Pmh) = Ap∗

G .

Proof: We establish a more general result. Namely, any
randomized trajectory which satisfies π∗P = π∗ is peak age
optimal over the space of all trajectories, where π∗ is given
in Lemma 1. See Appendix A.

This result establishes that the peak age minimization can
be solved in polynomial time, as we are able to compute an
optimal trajectory Pmh in polynomial time; in O(|V |2) time.

C. Average Age Minimization
We now consider the average age minimization problem. We

prove that in the symmetric setting, namely wi = 1 ∀ i ∈ V ,1

the average age minimization problem is NP-hard. The proof
essentially establishes an equivalence between the average age
minimization problem and the Hamiltonian cycle problem. See
[14] for details.

Since solving the average age minimization problem is hard,
we derive a lower bound on average age. Intuitively, if the
mobility graph is better connected then it should yield a lower
age. This is because a better connected mobility graph imposes
fewer restrictions on mobility. The following result obtains a
lower bound on network average age by comparing it with the
network average age of a complete graph.

Theorem 4: For any trajectory T ∈ T, the network
average age is lower bounded by

Aave(T ) ≥ 1

2

∑
i∈V

(
wi
π∗i

+ wi

)
, (13)

where π∗i =
√
wi∑

j∈V
√
wj

for all i ∈ V .

Proof: We use the Cauchy-Schwarz inequality along with
the peak age result to lower bound the network average age
on a complete graph. The proof is in our technical report [14].

Note that the term
∑
i∈V

wi

π∗i
is nothing but the optimal peak

age Ap∗
G ; see Theorem 3. Also, the lower bound in Theorem 4

is independent of the trajectory T . Thus, we have

Aave∗
G = min

T ∈T
Aave(T ) ≥ Aave

LB =
1

2
Ap∗
G +

1

2

∑
i∈V

wi, (14)

1The weights wi only measure relative significance of ground terminals.
Thus, setting wi = 1 ∀ i ∈ V is equivalent to setting wi = wj ∀ i, j ∈ V .



where T is the space of all trajectories. It must be noted that
a similar result was derived in the case of link scheduling for
age minimization in [7].

1) A Heuristic Randomized Trajectory: Motivated by the
peak age optimality results of the previous section, we restrict
ourselves to the space of randomized trajectories, and propose
a heuristic, called the fastest-mixing randomized trajectory,
and prove an average age performance bound for it.

Using the results in Theorem 1, the average age minimiza-
tion problem over the space of randomized trajectories can be
written as

Minimize
P,π,Z

∑
i∈V

wizii
πi

,

subject to Pi,j ≥ 0, ∀ (i, j), and P1 = 1,

πP = π, 1Tπ = 1, and πi ≥ 0 ∀i
Pi,j = 0, ∀(i, j) /∈ E,
P is irreducible,
Πi,j = πj ∀ (i, j),

Z = (I −P + Π)−1.

(15)

Here, P is the randomized trajectory, and π the unique
stationary distribution associated with it. Solving (15) can be
computationally complex due to the irreducibility and the non-
linearity constraint in Z = (I −P + Π)−1.

We next upper bound the network average age, for any
randomized trajectory P of the mobile agent. We first define
mixing time for a randomized trajectory.

To do this, we first discuss the notion of stopping rules and
stopping times in a Markov chain. A stopping rule is a rule
that observes the walk on a Markov chain and, at each step,
decides whether or not to stop the walk based on the steps
so far. Stopping rules can make probabilistic decisions and
therefore the time at which the walk stops, called the stopping
time, is a random variable.

Mixing Time [16] The hitting time from state distribution σ1
to σ2 on a Markov chain is the minimum expected stopping
time over all stopping rules that, beginning at σ1, stop in the
exact distribution of σ2. This is denoted by H(σ1, σ2). The
mixing time H of a Markov chain P is then defined as

H , sup
σ∈∆(V )

H(σ, π), (16)

where ∆(V ) is the collection of all distributions on V and π
is the stationary distribution of P.

Lemma 2: The network average age for a randomized
trajectory P is upper bounded by

Aave(P) =
∑
i∈V

wizii
πi
≤ 4HAp(P) +

∑
i∈V

wi, (17)

where H denotes the mixing time of the randomized
trajectory P.

Proof: Define Z , max
i

∑
j

|zij − πj |, known as the

discrepancy for a randomized trajectory P. This definition
implies that zii ≤ Z+πi, ∀i ∈ V. Thus, we get the following
upper bound: ∑

i∈V

wizii
πi
≤
∑
i∈V

(
wiZ
πi

+ wi

)
.

However, from [17] we know that Z ≤ 4H, where H is the
mixing time of the randomized trajectory P. Thus, we have
the required result∑

i∈V

wizii
πi
≤
∑
i∈V

(
4wiH
πi

+ wi

)
= 4HAp(P) +

∑
i∈V

wi,

where the last equality follows from Theorem 1.
We use this relation and suggest the following heuristic for
minimizing age: Find the fastest mixing randomized trajectory
P on the mobility graph G that minimizes peak age.

From the proof of Theorem 3, we know that for a ran-
domized trajectory P to be peak age optimal all we need
is πi ∝

√
wi, where π is the stationary distribution of P.

It, therefore, suffices to find P that satisfies πi ∝
√
wi, and

simultaneously minimizes the mixing time H. We call this the
fastest-mixing randomized trajectory, and use P∗ to denote it.
The following result provides a way to obtain P∗ by solving
a convex program.

Theorem 5: The fastest mixing randomized trajectory
can be found by solving the following convex optimiza-
tion problem:

Minimize
P

µ(P) = ||P−Π∗||2,

subject to Pi,j ≥ 0, ∀(i, j),
P1 = 1,

π∗P = π∗, Π∗i,j = π∗i ∀ i, j ∈ V,
Pi,j = 0, ∀(i, j) /∈ E.

(18)

Here ||A||2 denotes the spectral norm of matrix A and
π∗i =

√
wi∑

j∈V
√
wj
, ∀i ∈ V .

Proof: See Appendix B.
This convex program (18) finds a randomized trajectory P

on G that is closest to the stationary randomized walk Π∗, in
the spectral norm sense. Also, P ∗ is peak age optimal on graph
G, since it satisfies π∗i ∝

√
wi. Note that, the problem (18)

can be solved in polynomial time by converting it to a semi-
definite program [18].

We now bound the average age performance of the fastest-
mixing randomized trajectory.

Theorem 6: The network average age of the fastest-
mixing randomized trajectory is at most 8H-factor away



from the optimal average age:

Aave(P∗)

Aave∗
G

≤ 8H, (19)

where H is the mixing time of P ∗.

Proof See Appendix C.

To see the usefulness of the fastest-mixing randomized tra-
jectory, and Theorem 6, consider a random geometric graph
G(n, r). The graph consists of n nodes spread over a unit
square with a link between every two nodes that are within a
distance r. If v is the physical speed of the mobile agent, then
r must equal vτ , where τ is the slot duration. We know that
mixing time of G(n, r) is O

(
logn
r2

)
, and therefore, the fastest-

mixing randomized trajectory would be at most O
(

logn
v2maxτ

2

)
factor optimal. For highly connected graphs, such as Dirac
graphs in which the degree of each node is at least |V |/2, we
have constant factor of optimality; since the mixing times are
O(1) [19].

D. Age-based Trajectories
In the last two sub-sections, we proposed two randomized

trajectories, namely Pmh and P∗. Both were peak age optimal,
while the latter was also factor-H average age optimal. We
also noted that solving the average age problem is generally
hard. We now propose an age-based trajectory which can be
constant factor age optimal.

Age-based trajectory In every time slot, agent m moves
to the location that has the highest weighted function of
Ai(t). Specifically, if m(t) = i then

m(t+ 1) = arg max
j:(i,j)∈E

wjg (Aj(t)) , (20)

for all i, j ∈ V and time t, where g(·) is an increasing
function.

In the symmetric setting, where wi = 1 ∀ i ∈ V , we prove
that the age-based trajectory is factor-2 optimal.

Theorem 7: In the symmetric setting wi = 1 ∀ i ∈ V ,
the network average age Aave for the age-based trajectory
is bounded by

Aave

Aave∗
G
≤ 2|V |+ 1

|V |+ 1
≤ 2, (21)

for any increasing function g(·).

Proof: In the symmetric setting, we observe that the age-
based trajectory does a repeated depth-first search (DFS) of
graph G. In a DFS traversal, we note that every location gets
visited at least once in every 2|V | time-slots. This is because,

every vertex is visited at least once and visits after the first
visit to all nodes is at most |V |. This is because every repeated
visit to a vertex means that at least one new vertex was visited.

Thus, the average age can be upper bounded as: Aave
i ≤

(2|V | + 1)/2 and Aave ≤ |V |(2|V | + 1)/2. From Lemma 4,
we obtain the average age lower-bound to be Aave

LB = |V |(|V |+
1)/2. Combining this, we get Aave/Aave

LB ≤ (2|V |+ 1)/(|V |+
1). The proof follows because Aave

LB ≤ Aave∗
G , since Aave

LB is a
lower-bound.

IV. INFORMATION DISSEMINATION

We now consider the information dissemination problem.
The central terminal generates updates for every ground ter-
minal i, at rate λi, according to a Bernoulli process. The
generated updates for the ground terminal i are sent to the
mobile agent, which get queued in the ith FCFS queue. The
mobile agent follows a trajectory T , and delivers the head-of-
line update in queue i to terminal i, when it reaches it.

Our objective is to minimize the network peak age and
average age over the space of update generation rates λ and
all trajectories T:

Ap∗
D = min

T ∈T,λ

∑
i∈V

wiA
p
i , and Aave∗

D = min
T ∈T,λ

∑
i∈V

wiA
ave
i ,

(22)
where Ap

i denotes peak age and Aave
i denotes the average age

of terminal i. Their evolution is given by (2). For convenience,
we have omitted their explicit dependence on T ∈ T and λ.

Motivated by the results for the information gathering
problem, we consider randomized trajectories. Note that an
arriving update in queue i has service time equal to the inter-
visit times to ground terminal i, provided the update arrived
when the queue i was not-empty; Qi(t) 6= ∅. However, when
an update arrives to an empty queue i, the time to delivery
is not the inter-visit time, and depends on the location of the
mobile agent at the time of arrival.

Since the analysis of age for such a queueing system may
be difficult, we provide an upper bound, by comparing the the
ith queue with a discrete time Ber/G/1 queue with vacations:
whenever the ith queue is empty pretend that it goes on a
vacation, with vacation times having the same distribution as
inter-visit time; otherwise the service times for the queue are
just inter-visit times. Clearly, the age process of such a FCFS
queue is an upper bound for the age process Ai(t). Thus, we
upper bound the peak age Ap

i and average age Aave
i , by the

peak and average age of this Ber/G/1 queue with vacations.
We first analyze peak and average age of a Ber/G/1 queue
with vacations.

A. Age for Ber/G/1 Queue with Vacations

Consider a discrete time FCFS Ber/G/1 queue with vaca-
tions, where an arrival occurs with probability λ, the service
times S are generally distributed with mean E [S] = 1/µ, and
the vacation times V are also generally distributed. We obtain
an expression for the peak age of a discrete time Ber/G/1
queue with vacations, and a bound on average age.



Lemma 3: The peak age for a discrete time FCFS
Ber/G/1 queue with vacations is given by

Ap =
1

λ
+

1

µ
+
λE[S2]− ρ

2(1− ρ)
+

E
[
V 2
]

2E [V ]
− 1

2
, (23)

where ρ = λ
µ , while the average age is upper-bounded by

peak age, namely Aave ≤ Ap.

Proof: Proof is in the technical report [14].

B. Age Minimization Problem

Using Lemma 3, we now obtain an upper-bound on both,
network peak and average age, for a given randomized trajec-
tory P and update generation rates λ.

Lemma 4: For a randomized trajectory P and packet
generation rates λ, the peak and average age for a ground
terminal i is upper-bounded by

AUB
i =

1

πi

[
1 + zii +

1

ρi
+

ziiρi
1− ρi

]
− ρi

1− ρi
− 1, (24)

for all i ∈ V , where π is the unique stationary distribution
of P, Z = (I − P + Π)−1, Π is a matrix with all rows
equal to the stationary distribution vector π, and ρi , λi

πi
.

Proof: This is obtained by substituting S and V in
Lemma 3 by the inter-visit times H1,i, for queue i. We relegate
the details to our technical report [14].

We propose a policy, i.e. a randomized trajectory P and
update generation rate λ, that minimizes the age upper-bound
AUB =

∑
i∈V wiA

UB
i :

Definition Separation Principle Policy
1) Mobile agent follows the randomized trajectory P∗

obtained by solving (18).
2) Generate updates for the ground terminal i at rate

λ∗i =
π∗i

1 +
√
z∗ii − π∗i

, (25)

where π∗i =
√
wi∑

j∈V wj
and zii are diagonal elements

of the matrix Z = (I −P∗ + Π∗)−1.

We call it the separation principle policy for two reasons.
Firstly, P∗ is the fastest-mixing randomized trajectory, which
we proposed for minimizing average age in the information
gathering problem. Secondly, the update generation rate for
the ground terminal i, depends only on zii and πi, which are
functions of the first and second moments of the return times
to terminal i under trajectory P∗:

E [Hi] =
1

πi
and E

[
H2
i

]
= − 1

πi
+

2zii
πi

,

where Hi denotes the return time to terminal i, starting from
i, under the fastest mixing randomized trajectory P∗. We now
bound the performance of this separation principle policy.

Theorem 8: The peak and average age of the separation
principle policy is bounded by

Ap

Ap∗
D
≤ 4H+ 4

√
H+ 2 and

Aave

Aave∗
D
≤ 8H+ 8

√
H+ 4,

where H is the mixing time of the randomized trajectory
P∗.

Proof: We formulate the upper bound age minimization
problem and use an approach similar to Lemma 2 and Theo-
rem 6. Proof details are in the technical report [14].

The separation principle policy is factor O(H) peak age and
average age optimal. It is worthwhile to note that a similar
separation principle policy was established in a completely
different setting of scheduling links for age minimization
in [7]. Theorem 8 generalizes that result to a graph.

V. SIMULATION RESULTS

We test the performance of our proposed trajectories on
three different kinds of mobility graphs: random geometric
graphs G(n, 2√

n
),2 grid graphs with diagonal edges, and 3-

connected ring or cycle graphs; see Figure 3. We use n to
denote the number of ground terminals, namely n = |V |. Link
weights are picked uniformly at random from the interval (1, 2]
in an independent manner. We run our simulations for a total
of 50000 time-slots, to get a good estimate of the peak and
average age.

We first consider the information gathering problem, and
plot peak and average age for all the proposed trajectories
of the mobile agent: the Metropolis-Hastings randomized
trajectory Pmh, fastest mixing randomized trajectory P∗, and
age-based trajectory. Figure 4 plots peak age as a function of
network size n for the random geometric graph G (n, 2/

√
n).

We observe that the peak age for all the three proposed
trajectories match. We know from Theorems 3 and 5 that
that the two randomized trajectories, namely, the Metropolis-
Hastings randomized trajectory Pmh and the fastest mixing
randomized trajectory P∗, are both peak age optimal. Figure 4,
therefore, suggests that even the age-based trajectory for the
mobile agent is peak age optimal.

In Figure 5 we plot the average age performance of the
proposed trajectories, as a function of network size n. Also
plotted is the lower bound for average age derived in Theo-
rem 4. We see that the age-based policy is nearly average age
optimal, while the fastest mixing randomized trajectory P∗

performs slightly better than the Metropolis-Hastings random-
ized trajectory Pmh. We compare on a single random instance
for each n.

Theorem 6 proved that the fastest mixing randomized tra-
jectory P∗ is at least factor-8H optimal. Figure 5 validates

2Setting r = 2√
n

for random geometric graphs ensures connectivity w.h.p.



(a) (b) (c)

Fig. 3: (a) A random geometric graph with 100 nodes, (b) A grid graph with 81 nodes and diagonal edges, and (c) A 3-connected
ring or cycle graph with 21 nodes.
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Fig. 4: Information gathering problem in G(n, 2/
√
n): network

peak age as a function of network size n for several proposed
trajectories of the mobile agent.
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Fig. 5: Information gathering problem in G(n, 2/
√
n): network

average age as a function of network size n for several
proposed trajectories of the mobile agent.

this conclusion: for example, for n = 90 ground terminals,
the average age for the fastest mixing randomized trajectory
P∗ is approximately a factor 3 away from the lower bound.

In Figure 6 we plot the average age performance for
several proposed trajectories, as a function of the network size.
The age-based policy, again outperforms the two randomized
trajectories, and is nearly optimal. We omit the plot for the ring
graph due to space constraints. We observe that the average
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Fig. 6: Information gathering problem in the Grid graph:
network average age as a function of network size n for several
proposed trajectories of the mobile agent.

age for the fastest mixing randomized trajectory P∗, namely
Aave(P∗), is much worse in the ring graph than in the grid
graph. This is because the mixing time for the ring graph is
much larger than for the grid graph. Similar observation holds
in comparing G(n, 2/

√
n) and the grid graph. Due to space

constraints, we omit simulation results for the information
dissemination problem.

VI. CONCLUSION

We considered the trajectory planning problem for infor-
mation gathering and dissemination on graphs using a mobile
agent. In the information gathering problem, we showed that a
randomized trajectory, namely the fastest-mixing randomized
trajectory, is peak age optimal and factor-H average age
optimal. We showed that obtaining an average age optimal
trajectory can be NP-hard, while we constructed the peak age
optimal trajectory in polynomial time. To improve the average
age, we proposed an age-based policy, and showed it to be
factor-2 average age optimal, in a symmetric setting. In the
information dissemination problem, we proposed a separation
principle policy, in which the mobile agent follows the fastest
mixing randomized trajectory with a simple rate control. We
proved that the separation principle policy is factor-O(H)
optimal, in both peak and average age.
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APPENDIX

A. Proof of Theorem 3

It suffices to argue that the peak age for any trajectory is
lower bounded by

∑
i∈V

wi

π∗i
. Let Hk,i to be the kth return

time to terminal i. Then the peak age Ap
i is given by

Ap
i = lim sup

T→∞

t=T∑
t=1

Ai(t)1{m(t)=i}

t=T∑
t=1

1{m(t)=i}

= lim sup
K→∞

1

K

k=K∑
k=1

Hk,i,

where K is the total number of returns to ground terminal
i over a time horizon T . Now, the fraction of time-slots in

which the mobile agent is at ground terminal i, is given by

fi = lim
T→∞

t=T∑
t=1

1{m(t)=i}

T
= lim
K→∞

K
k=K∑
k=1

Hk,i

=
1

Ap
i

,

and therefore, Ap =
∑
i∈V wiA

p
i =

∑
i∈V

wi

fi
. Note that fi,

being the fraction of time-slots the mobile agent is at terminal
i, is a distribution over V . Thus, Ap can be lower bounded by

Ap =
∑
i∈V

wiA
p
i ≥ min

{fi≥0,
∑

i fi=1}

∑
i∈V

wi
fi

=
∑
i∈V

wi
π∗i
,

where π∗ are same as defined in Lemma 1.

B. Proof of Theorem 5
From [18], we know that the fastest mixing, reversible

Markov chain on a graph G(V,E) having the stationary
distribution π can be found by formulating the following
convex program:

Minimize
P

||D1/2PD−1/2 − qqT ||2,

subject to Pi,j ≥ 0, ∀(i, j)
P1 = 1,

π∗P = PTπ∗,

Pi,j = 0, ∀(i, j) /∈ E.

(26)

Here D = diag(π∗) and q = (
√
π∗1 ,
√
π∗2 , ...,

√
π∗n). Note

that we do not require reversibility, so we can replace the
detailed balance constraint π∗P = PTπ∗ with the global
balance constraint π∗P = π∗. Also, left and right multiplying
(D1/2PD−1/2 − qqT ) by matrices D−1/2 and D1/2, respec-
tively, does not change the spectral norm; since P has the
same eigen-values as D1/2PD−1/2 and qqT has the same
eigen-values as D−1/2qqTD1/2 [18]. Further, observe that
D−1/2qqTD1/2 = qqT = Π∗, where Π∗i,j = π∗i ∀ i, j ∈ V.
Thus, the optimization problem reduces to (18).

C. Proof of Theorem 6
Note that the peak age for the fastest-mixing randomized

trajectory P∗ is given by Ap(P∗) =
∑
i∈V

wi

π∗i
, since π∗P∗ =

π∗. From Theorem 4, the average age lower bound is given
by

Aave
LB =

∑
i∈V

1

2

(
wi
π∗i

+ wi

)
=

1

2
Ap(P∗) +

1

2

∑
i∈V

wi. (27)

To prove the result, it suffuses to argue that
Aave(P∗)/ALB ≤ 8H. From (27) and Lemma 2, we
get

Aave(P∗)

Aave
LB

≤
4HAp(P∗) +

∑
i∈V wi

1
2A

p(P∗) + 1
2

∑
i∈V wi

≤ 8H,

since H is always greater than or equal to 1.


